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Anomalous slowing down in the metastable liquid of hard spheres
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Department of Numerical Analysis and Computer Science, Royal Institute of Technology, SE–100 44 Stockholm, Sweden

~Received 28 February 2001; published 15 February 2002!

It is demonstrated that a straightforward extension of the Arrhenius law accurately describes diffusion in the
thermodynamically stable liquid of hard spheres. A sharp negative deviation from this behavior is observed as
the liquid is compressed beyond its stability limit. This dynamical anomaly can be compared with the nonlinear
slowing down characteristic of the supercooled dynamics regime in liquids with continuous interaction. It is
suggested that the observed dynamical transition is caused by long-time decomposition of the configuration
space. This interpretation is corroborated by the observation of characteristic anomalies in the geometry of a
particle trajectory in the metastable domain.
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Computer simulations of liquids using hard spheres~HS!
remain a key source of information about the most fun
mental aspects of the liquid state. The main intellectual
traction of these models is in their purely geometric natu
all the observable properties of a HS liquid can be reduce
a single thermodynamic quantity—entropy, a measure
finite-range structural correlations@1,2#. Thus, mapping a
phenomenon exhibited by liquids with continuous intera
tions on a HS model yields its interpretation in terms of t
statistical geometry of sphere packing.

An important aspect of liquid behavior addressed us
HS models is supercooled liquid dynamics@3–6#. This no-
tion refers to the complex of dynamical anomalies obser
in a liquid that remains in a metastable equilibrium below
melting point. For the one-component HS system, the sta
liquid domain is bounded by the critical value of the packi
fraction hc50.493 @6# (h5prs3/6, wherer is the density
ands is the HS diameter!. Having been compressed beyon
h50.54, the HS liquid inevitably crystallizes@6#.

The most prominent indicator of the supercooled liqu
regime, and, in fact, its defining feature@7,8#, is the charac-
teristic behavior of the relaxation dynamics that slows do
with cooling progressively faster than it can be inferred fro
the Arrhenius prescription universally describing the te
perature variation of the transport coefficients in sta
liquids.

In contrast to atomistic models with continuous intera
tion, the HS systems lack the energy scale. Therefore
order to compare the non-Arrhenius liquid dynamics as
served in the former with the respective behavior of
metastable HS liquid, we have to resolve the fundame
problem of finding a description of thestableHS liquid dy-
namics that would be an adequate analog of the Arrhe
law. In this capacity, Hildebrant-Batchinski relation@9# con-
necting the diffusion coefficient with the free volume w
suggested@10#. The HS liquid diffusion@10# follows this
relation in the stable domain and deviates from it forh
.hc @11#. However, this deviation ispositiveand, therefore,
cannot be regarded as an appropriate analog of the su
Arrhenius slowing down in supercooled liquids.

In this paper, it is demonstrated that an earlier sugge
relation between the diffusion coefficient and the thermo
namic entropy@12# can be interpreted as a straightforwa
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extension of the Arrhenius law. Having been tested by m
lecular dynamics, it is found to accurately describe the d
fusion in the stable one-component HS liquid. Moreover
significant slowing down as compared with this relation
observed in the metastable HS liquid domain that can
compared with the nonlinear slowing down in supercoo
liquids with continuous interatomic interactions. This tran
tion in the HS dynamics is interpreted in terms of long-tim
scale decomposition of the configuration space.

The Arrhenius law asserts that the diffusion coefficientD
scales with the temperatureT as

D5zpD0e2Ea /kBT, ~1!

where the activation energyEa is interpreted as the averag
height of the energy barrier that a particle has to cross in
escape route from the current position,p is the success prob
ability in an attempt to find an escape route, andz is the
attempt rate. In the case of HS,Ea50, andD is controlled
by p that essentially quantifies the topological constrai
imposed on the local structural rearrangements. In this c
text, two possible dynamical regimes can be considered.

~i! The available configurations are abundantly connec
the connectivity is facilitated by independent motions of
dividual particles. An attempt of a particle to move to a
adjacent position is always successful if the destination
sition is allowed by the equilibrium structural constrain
Then the inverse average number of attempts needed f
particle to move from its current position scales asp5es

where s is the excess entropy per particle—the differen
between the system’s entropy and that of the perfect ga
the same thermodynamic conditions.

~ii ! The configuration-space connectivity is restricted
additional constraints, complementary to the ensemb
averaged structural constraints described above. In this c
the diffusive motions of an individual particle are coupled,
a presumably hierarchical manner, with the respective m
tions of other particles within a certain range@13#. These
constraints give rise to a long-time decomposition of t
available configuration space@14#. Therefore, a particle, in
its elementary diffusive motion, cannot access all the ad
cent positions that are allowed by the ensemble-avera
constraints, which implies thatp,es. It has to be empha-
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 032501
sized that the described division of the configuration sp
exists on a limited time scale and, therefore, is quite dist
from the equilibrium distribution. However, there exists
conjecture@15# relating the cooperativity range to the equ
librium entropy; this conjecture is not discussed here.

It has to be mentioned that almost all points of a confin
region of a multidimensional configuration space are clos
its surface@16#. Therefore, in the divided configuration spa
corresponding to situation~ii !, almost every point is adjacen
to a dividing boundary, with a profound effect on the rate
dynamics. Another remark is that the type~i! dynamics can
be compared with the ‘‘small world’’ dynamics of random
connected multidimensional networks@17#.

The central postulate we adopt here is that
configuration-space topology that controls the relaxation
namics in the stable HS liquid is of type~i!. It is also as-
sumed that the attempt frequencyz is proportional to the
Enskog collision frequencyG @18#. With this assumption,
Arrhenius law ~1! can be transformed into the followin
simple form relatings andD:

D5GD0es. ~2!

In this form, the relation becomes equivalent to the ear
suggested scaling law for atomic diffusion@12#. The latter
was successfully tested on a number of simple liquids,
cluding the HS liquid using a two-body approximation fors
@2#. In the full s version, the scaling law was tested on som
metallic liquids@19#, but for the HS liquid, such tests hav
not been done so far. In this context, a conjecture should
mentioned whereD}eBs with BÞ1 @20#.

In this study, relation~2! was tested using a molecula
dynamics simulation of a HS system comprising 6912 id
tical particles. This simulation was necessitated by the
that, although the HS diffusion has been explored in a nu
ber of simulations, a considerable uncertainty remains c
cerning its size dependence at different densities@6,21#.

The assumption that the dynamics in a liquid is control
by the excess entropy, a measure of the structural corr
tions, implies that the length should be measured in term
the characteristic length of the structure that manifests it
in the position of the main peak of the structure factor. It
known that the latter scales with the densityr asr1/3; there-
fore, r21/3 is a convenient unit of length. This unit of lengt
is also consistent with the equilibrium separation of the ne
est neighbors in the Lennard-Jones~LJ! liquid of which the
structure factor can be reproduced by that of the HS liqu
The use ofs as the unit of length that was adopted in t
earlier test of the scaling law@12# on the HS liquid is appar-
ently inappropriate at lower densities.

The HS excess entropy was calculated here by the t
modynamic integration using Boublik-Nezbeda approxim
tion @23# for the equation of state:

P/rkBT5~11h1h22b1h32b2h42b3h5!/~12h!3

~3!

with b150.764314,b250.151532, andb350.654551. A mi-
nor correction was introduced forh.0.47 @6#. Within the
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range ofh explored here, the approximation was found
reproduce the simulation results within 0.2%.

The simulation results are shown in Fig. 1. Each value
D was obtained from the mean-square displacement a
aged over 104 collisions per particle. These results are co
pared with another set of the HS diffusion data that repres
an extrapolation to the infinite system size@21,22#. It is clear
that with D050.079, relation~2! accurately describes th
diffusion in the one-component HS system within the ran
0.36,h,0.49 that covers the entire stable liquid doma
D0 corresponds to the diffusion rate in a hypothetical situ
tion where the discussed liquid diffusion mechanism is s
valid buts50. The observed value ofD0 can be rationalized
using the following arguments based on a simple toy mo
in the spirit of the lattice gas models. Consider a tessella
of the space into equal-size cells. Each cell contains
stationary particle that stays within the cell until its status
changed; besides, there is a number of mobile particles
tributed in space. At each time step, a mobile particle c
lides with the stationary particle that is in the same cell. A
result, the former becomes stationary, whereas the latter
comes mobile and traverse the cell boundary into a rando
chosen adjacent cell~if several mobile particles simulta
neously occur in one cell, an arbitrary collision sequence
assumed!. Thus, each particle performs a random walk w
the step size'r21/3. Assuming that the number of mobil
particles is small, and keeping in mind that there is one p
ticle jump per two collisions, the diffusion coefficient can b
estimated asD'Gr22/3/12, which is in a good agreemen
with the above value ofD0. The results presented in Fig.
demonstrate that in the metastable liquid domainh.hc , the
HS diffusion exhibits a rapidly increasing slowing down
compared with the stable liquid behavior conjectured by
lation ~2!. The apparent nonlinearity of the dynamical slow
ing down of HS liquid under supercompression revealed
Fig. 1 can be compared with respective behavior of the
percooled liquids with continuous interactions. Using t
above arguments, the onset of this new dynamical reg

FIG. 1. Diffusion coefficient in the HS liquid as a function o
the packing fractionh. Dots, the present molecular-dynamics sim
lation; dotted line, the extrapolated limit for the infinite system s
@21,22#; chain-dashed line, Eq.~2! with D050.078; dashed line, the
Enskog approximation@18#.
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BRIEF REPORTS PHYSICAL REVIEW E 65 032501
can be interpreted as a clear evidence that the type~i!
configuration-space dynamics controlled by the equilibri
distribution, transforms into type~ii ! dynamics dominated by
the extra dynamical constraints and long-time configurati
space decomposition.

Figure 2 showsD, as a function of temperature and de
sity, in a liquid simulated by molecular dynamics using t
LJ potential truncated at its minimum~the truncation was
done to avoid a phase decomposition at low densities!. D is
scaled usings obtained by thermodynamic integration andG
estimated as@18#

G54rs2g~s!~pkBT/m!1/2. ~4!

Here,s is interpreted as the position of the main maximu
of g(r ) @1,12#. The results agree with Eq.~2! in the stable
liquid domain, whereas both supercooling and superco
pression result in a sharp negative deviation.

The long-time configuration-space decomposition conj
tured to dominate the HS liquid dynamics in the metasta
domain can be detected from its impact on a particle tra
tory. The latter represents a three-dimensional~3D! real
space projection of the multidimensional trajectory of t
system in its configuration space. The relaxation dynam
that unfolds in type~i! regime represents a random walk
the configuration space, which must also be true for a sin
particle trajectory. The long-time decomposition of the co
figuration space caused by the development of extra c
straints characteristic of the type~ii ! regime give rise to dis-
tinct anomalies in the geometry of a particle trajectory.
quantity that can be conveniently employed as an indica
of a possible deviation from the random-walk geometry in
particle trajectory is the maximum absolute value of the d
placement from the original position within the time interv
(0,t):

FIG. 2. Diffusion coefficient of the liquid simulated using th
truncated LJ potential. Dots and the lower scale correspond to
density variation at constant temperatureT50.7. Open triangles
and the upper scale correspond to the temperature variation at
stant densityr50.88. The chain-dashed line marks the same va
as in Fig. 1.
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Z~ t ![max$R~t!, 0,t,t%. ~5!

The ratio of its second moment^Z2(t)&, the mean square
maximum displacement, to the mean square displacem
^R2(t)& for a random walk in 3D space is equal
1.4024 . . . @24#. The evolution of this ratio as a function o
^R2(t)& for various values ofh is presented in Fig. 3. Fo
h50.48, in the stable liquid domain, the random-walk lim
is attained after a short initial period of ballistic behavior,
soon as a particle leaves the cage of its nearest neighb
The geometry of a particle trajectory changes significantly
the HS liquid is compressed beyond its stability limit: a ne
regime of diffusion develops where^Z2(t)&/^R2(t)& exceeds
the random-walk value. This indicates that a particle traj
tory has a higher chance than random to return to an ea
covered region. The extent of this apparent confinement
fect in a particle trajectory amounts to the diffusive displac
ment of several particle diameters, and it increases rapidly
well as the magnitude of the effect, with the increase ofh.

According to the arguments presented above, the cha
teristic time of a transition between two configuration-spa
regions can be regarded as a measure of the real-space e
of the local configurational transformation that the syst
has to perform to cross between the two regions. The lo
lived configuration-space decomposition that was presum
to arise in type~ii ! regime implies the existence of real-spa
correlations, both positional and dynamical, that extend
yond the range of the equilibrium correlations. The rap
increase in the~time-limited! correlation length in the meta
stable HS liquid that has been detected here from the ge
etry of a particle trajectory represents a generic feature of
supercooled liquid behavior@25#. In that regime, ergodicity
restoring relaxation dynamics whereby long-lived metasta
states are created and destroyed is facilitated by highly
lective activated hopping. This dynamics was discerned
the metastable HS liquid using dynamical density-functio
theory analysis@26#.
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FIG. 3. The ratio of the mean-square maximum displacem
^Z2(t)& to the mean-square displacement^R2(t)&. Solid line, h
50.48; dashed line,h50.52; chain-dashed line,h50.53. The dot-
ted line indicates the random-walk limit̂ Z2(t)&/^R2(t)&
51.4024 . . . @24#.
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The profound similarity between the pattern of slowi
down in the metastable HS liquid and that in conventio
supercooled liquids indicates the entropic nature of this p
nomenon@27#, and suggests a unifying scenario for its d
velopment in terms of the configuration-space connectiv
The change in the packing geometry under cooli
compression beyond the liquid phase stability limit, presu
ably caused by the reduction of free volume@28#, leads to the
fts

on
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loss of the short time-scale configuration-space connectiv
This results in a fundamental transformation of the relaxat
dynamics that can be detected as breaking the relation
tween betweens andD prescribed by the scaling law~2!.

I thank D. Wales for useful comments. This study w
supported by the Swedish Research Council.
f

ys.

un.

d
,

@1# J. P. Hansen and I. McDonald,Theory of Simple Liquids~Aca-
demic Press, London, 1976!.

@2# R.D. Mountain, and H. Raveche, J. Chem. Phys.35, 2250
~1971!.

@3# J.P. Boon and S. Yip,Molecular Hydrodynamics~McGraw-
Hill, New York, 1980!.

@4# W. Götze and L. Sjo¨gren, Rep. Prog. Phys.55, 241 ~1992!.
@5# E.D.G. Cohen, Physica A194, 229 ~1993!.
@6# R.J. Speedy, Mol. Phys.95, 168 ~1998!.
@7# M.D. Ediger, C.A. Angell, and S.R. Nagel, J. Phys. Chem.100,

13200~1996!.
@8# C.A. Angell, J. Non-Cryst. Solids131-133, 13 ~1991!.
@9# A.J. Batchinski, Z. Phys. Chem., Stoechiom. Verwandtscha

84, 643 ~1913!; J.H. Hildebrand,Viscosity and Diffusion
~Wiley, New York, 1977!.

@10# L.V. Woodcock, J. Chem. Soc., Faraday Trans. 272, 1667
~1976!.

@11# L.V. Woodcock and C.A. Angell, Phys. Rev. Lett.47, 1129
~1981!.

@12# M. Dzugutov, Nature~London! 381, 137 ~1996!.
@13# R.G. Palmer, D.L. Stein, E. Abrahams, and P.W. Anders

Phys. Rev. Lett.53, 958 ~1984!.
@14# R.G. Palmer, Adv. Phys.31, 669 ~1982!; A. Barrat, S. Franz,

and G. Parisi, J. Phys. A30, 5593~1997!.
@15# G. Adam and J.H. Gibbs, J. Chem. Phys.43, 139 ~1965!.
l.

,

@16# S.-K. Ma, Statistical Mechanics~World Scientific, Singapore,
1985!.

@17# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440
~1998!.

@18# S. Chapman and T.G. Cowling,The Mathematical Theory O
Non-uniform Gases~University Press, Cambridge, 1939!.

@19# J. Hoyt, M. Asta, and B. Sadigh, Phys. Rev. Lett.85, 594
~2000!.

@20# Y. Rosenfeld, Phys. Rev. A15, 2545 ~1977!; Y. Rosenfeld, J.
Phys.: Condens. Matter11, 5415~1999!.

@21# J.J. Erpenbeck and W.W. Wood, Phys. Rev. A43, 4254~1991!.
@22# B.J. Alder, D.M. Gass, and T.E. Wainwright, J. Chem. Ph

53, 3813~1970!.
@23# T. Boublik and J. Nezbeda, Collect. Czech. Chem. Comm

51, 2301~1985!.
@24# V. Seshadri and K. Lindenberg, J. Stat. Phys.22, 69 ~1980!.
@25# E.W. Fischer, E. Donth, and W. Steffen, Phys. Rev. Lett.68,

2344 ~1992!; W. Kob, C. Donati, S.J. Plimpton, P. Pool, an
S.C. Glotzer,ibid. 79, 2827~1997!; E.R. Weeks, J.C. Crocker
A.C. Levitt, A. Scofield, and D.A. Weitz, Science287, 627
~2000!.

@26# K. Fuchizaki and K. Kawasaki, J. Phys. Soc. Jpn.67, 2158
~1998!.

@27# A. Crisanti and F. Ritort, e-print cond-mat/0102104.
@28# G. Grest and M. Cohen, Adv. Chem. Phys.48, 455 ~1981!.
1-4


